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Abstract. A universal quasi-triangular R-matrix for the non-standard quantum (It 1) P o i n d  
algebra Uzim(l, I )  is deduced by imposing analyticity in the deformation parameter z.  A family 
Ump, of 'quantum gnded wnbactions' of the algebra Uziso(l, I )  63 U-,iso(l. I )  is obtained. 
Quantum analogues of the two-dimensional Euclidean, Poincarb and Galilei algebras enlarged 
with dilations are contained in Uwgu as Hopf subalgebras with two primitive banslations. 
Universal R-mahices for these quantum Weyl (similitude) algebras and their associated quantum 
groups are constructed. 

1. Introduction 

Two types of quantum deformations for the so(2,Z) algebra and for its most relevant graded 
contractions have recently been studied in [I]. They are called standard and non-standard 
quantum algebras according to the fact that their corresponding coboundary Lie bi-algebras 
come from a classical r-matrix which is a skew solution either of the modified classical 
Yang-Baxter equation (YBE), or of the classical YBE respectively. In contradistinction with 
the standard case, the family of non-standard quantum algebras contains tvm-dimensional 
Euclidean and (1 + 1) Poincark and Galilei algebras enlarged with a dilation as quantum Hopf 
subalgebras: the so-called 'Weyl' or similitude subalgebras. These quantum subalgebras 
share the property of including the two translation generators as primitives. This fact 
could be relevant in relation to the problem of discretizing two-dimensional spaces in some 
symmetric way. 

Let us also recall that a quasi-triangular Hopf algebra [2] is a pair (A, R) where A is 
a Hopf algebra and R E A @ A is invertible and verifies that 

a a AX = R(AX)R-' V X E A (1.1) 
(A @ id)R = RI,% (id @ A)R = R13R12 (1.2) 

where, if R = Ciai @ bi. we denote RIZ = C i u i  @ bi @ 1, 'RI3 3 C i u i  @ 1 @ bi, 
R2) = xi 1 @ai @ bi and U is the flip operator a(x @ y) = (y 8 x ) .  If A is a quasi- 
triangular Hopf algebra then R is called a universal R-matrix and satisfies the quantum 
YBE 

RIZR13R23 = %3R13R12. ( 1.3) 
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In this paper the construction of universal R-matrices and quantum groups for the above 
mentioned family of non-standard quantum algebras is discussed. In particular. we obtain 
the universal R-matrices for the Weyl subalgebras. 

A straightforward approach to this problem would start from a universal R-matrix for 
the non-standard Hopf algebra U,s1(2, W) Y U,s0(2, I ) ,  since the prescription U,so(2,2) N 

U,s0(2, 1) @ U 4 0 ( 2 , 1 )  applied to R-matrices would lead to a universal R-matrix for 
Uzso(2, 2). By introducing 'quantum graded contractions' a set of R-matrices for all 
the family of non-standard algebras would then, be obtained. A similar procedure was 
developed in [3,4] for obtaining universal R-matrices for some standard quantum algebras. 
Unfortunately, to our knowledge, no universal R-matriu for the non-standard Uzs1(2, R) 
has appeared in any literature: the universal R-matrix given in 151 neither verifies (1.1) nor 
satisfies (1.3). 

Therefore, we have to focus on the problem from a different point of view. Following 
the method developed in [6] for the standard ( I  + I) groups and in [7] for the Heisenberg 
group, we impose analyticity in the deformation parameter z and relation (1.1) in order 
to obtain an R-matrix for the non-standard quantum (1 + 1) Poincar.4 algebra U,iso(l, I). 
The R-matrix so obtained coincides in t u n  with a universal R-matrix for the positive Bore1 
subalgebra of the non-standard sI(2, R) given in 181; this fact proves its universality. This 
explicit construction together with a brief overview of both the quantum Poincare algebra 
and the group stndied in 191 is presented in section 2. The fact that 

can also be used at the group and R-matrix levels and leads to the whole quantum structure 
for this group as shown in section 3: Lie algebras with structure f.(so(p, q )  @ so@, s)) 
are described in [lo]. A 'quantum graded contraction' is introduced providing quantum 
structures for two more non-standard quantum real algebras: U,iiso(l, I )  and Uzf&o(2)@ 
so(1. 1)) (the latter is isomorphic to the (2+ 1) expanding Newton-Hooke algebra). Each of 
these quantum algebras contains a Hopf Weyl subalgebra. Section 4 is devoted to obtaining 
the universal R-matrices and quantum groups corresponding to these Weyl subalgebras. 

Uzr4(so(l, I )  @so(l ,  I)) N U,iso(l, I )  @ U-,iso(l, 1) (1.4) 

2. Universal R-matrix for the Poinear6 group 

The (1 + 1) Poincar.4 algebra iso(l.1) is generated by one boost generator K and the 
translation generators along the light-cone P*. The Lie brackets are 

[K, Pi] = f2Pi [P+, P-1 = 0. (2.1) 
A non-standard coboundary bi-algebra of iso(1,  1) is generated by the classical r-matrix 
r = ZK A Pi- which verifies the classical YBE. 

The quantum deformations for the universal enveloping algebra Uiso(l, 1) and for 
the algebra of smooth functions on the group Fun(ZSO(1, I)) ,  denoted respectively by 
U,iso(l, I) and Fun, ( lSO(I ,  l)), are given by the following propositions (see [9] for a 
more detailed exposition and proofs, and also [ I l l ) .  
Proposition I .  The Hopf structure of U,iso(l, I )  is given by the coproduct, co-unit and 
antipode 

4P+ = 1 @ P+ + P+ @ 1 

AP- = e-"+ B P- + P- e"+ (2.2) 
4 K = e-"+ @ K + K @ e''+ 
t(X) = 0 y(X) = -e"+Xe-"+ for X E {K, P i )  (2.3) 
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and the commutation relations 

(2.4) 

[ j , r i + ~ = z ( e ~ a  -1) [ i . 6 - 1 = 0  [i+,i-~=-~zi- (2.5) 

sinh zP+ 
[K, P+] = 2- [ K ,  P-I = -2P- coshzP+ [P+, P-I = 0. 

Z 
Proposition 2. The Hopf algebra Fun, ( lSO(I ,  1)) has multiplication given by 

coproduct 

~ ( 2 )  = 2 B 1 + 1 B 2 A(&) = 6* @ 1 +e+'? B & (2.6) 
co-unit and antipode 

E(X) = o  x E (i+,i-,2} (2.7) 
y ( j )  = -i y(&) = -eF296*. (2.8) 

The quantum coordinates f ,  6- and 6+ of F u n , ( l S O ( l ,  1)) are, respectively, the dual 
basis of the U,iso(l, 1) generators H = ezP+K, A- = e-"+P- and A+ = P+. 

We now proceed to deduce a universal R-matrix for U,iso(l, 1). We assume that the 
R-matrix is analytical in the quantum parameter z (= logq) and that R = 1 @ 1 + zK A 
P+ +O(z2); hence, we consider an R-matrix as a formal power series in z with coefficients 
in Uiso(1,I) @ Uiso(1,l). We stat from the ansatz 

(2.9) 
Firstly, we impose R to verify relation (1.1). Starting with the primitive generator P+, it is 
implied that 

[R, AP+] = 0. (2.10) 

(2.11) 

(2.12) 
We should now apply condition (1.1) for the two remaining generators P- and K. Omitting 
the arguments of the functions f and g we have 

RAXR-' = exp(zfg)AXexp(-zfg) = AX + zlfg, AX] + z?Ifg, [fg, AX]] + . .. 

R = exp(zf(K, Pi, z)g(P+. P-, z)). 

This requirement is fulfilled if 

[ f ( K ,  p+, Z)g(P+. P-, z), AP+1= I f ( K ,  P+, z), AP+lg(P+, P-, Z) = 0. 
Therefore, by taking into account commutation rules (2.4) a solution for f(K, P+. z) is 

f(K, P+, z) = K A sinhzP+. 

z2 
2" 

n! +-[fZ, [ fg . .~[ fg ,AXl" ' . . . I l  +.". (2.13) 

Since P- commutes with P+, relation (2.13) with X 5 P- becomes 

exp(zfg)AP- exp(-zfg) = AP- +zIf, AP-lg + -[f, [f, AP-]lg* + ' '  22 

2! 
+-[I, [f .. [f, AP-]"' . , .]Jg" +. ' ,  . Z" 

(2.14) n !  
We need to obtain the brackets If, AP-I, [f, [f, AP-11,. . . in (2.14). The first and the 
second brackets are 

If, AP-I = A  If, [f, AP-I1 = BZShhzAP+ (2.15) 
where 

A =Zexp(-zAP+)sinhzP+@P- -2exp(zAP+)P-@sinhzP+ (2.16) 
B Zexp(-zAP+)sinhzP+ 63 P- fZexp(zAP+)P- @sinhzP+. (2.17) 
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Due to expression (2.12) f commutes with any arbitrary function of P+. so we obtain 

[f, sinh ZAP+] = 0 If, B ]  = A2sinhzAP+. (2.18) 
By a recurrence method we obtain the 2n and 2n t 1 iterates 

If, [f ' .  'If, AP-1'"). . .I] = B(2sinhzAP+)2"-' (2.19) 
(2.20) If, [ f . - . [ f ,  AP-Iz"+l'...l] = A ( 2 ~ i n b z A P + ) ~  

so that expression (2.14) can be written as 
m p + i  

(2sinh zAP+)'gutI (U + l)! exp(zfg)AP-exp(--zfg)= AP- + A x  
l=O 

+B 5 & (2sinhzAP+)z-1g' 
I=i 

= AP- i- A sinh(2zsinh(zAP+)g) 
2sinhzAP+ 

[cosh(2z sinh(zAP+)g) - 1 @ 11. (2.21) 
B 

2StnhZAP+ + .  
By introducing 

c =  sinh(2zsinh(zAP+)g) (2.22) 
2sinhzAP+ 

1 
2stnhzAP+ 

[cosh(2zsinh(zAP+)g) - 1 @ I] (2.23) D =  , '  

the right-hand side of expression (2.21) can be written as AP- f AC + B D ,  which must 
be equal to 

(2.24) 
Thus, if we impose that (2.21) coincides with (2.24) we obtain the following system of 
equations for the function g: 

(l@P-)(e-"+@l -ezp+@1+2e-'PtsinhzP+@e-'Pt(D+C))=0 (2.25) 
(P- @ 1)(1 @erP+ - 1 @e-"+ +?E''+ sinhzP+ @ ezP+(D - C)) = 0. (2.26) 
Both equations can be summarized by the expression 

a o AP- = e='+ @ P- t P- @ e-rP+. 

exp(zk2z sinh(zAP+)g) = exp(-12zAP+) (2.27) 

leading to the same result for the function g: 
A p+ 

g =  . stnhzAP+' 
Finally, an explicit check shows that the R-matrix 

sinh zA P+ 

(2.28) 

(2.29) 

also verifies property (1.1) for the last generator X. Note that the functions f (2.12) and g 
(2.28) commute. 

Result (2.29) is in fact similar to a universal R-matrix given in [8] for a Hopf algebra 
(U, h )  which is isomorphic to the Hopf subalgebra ( K ,  P+) of U,iso(l. 1). Therefore, since 
the R-matrix (2.29) does not depend on P-, the universality holds and (2.29) satisfies the 
quantum YBE (1.3). It is worth remarking that expression (2.29) has also been obtained in 
[12] following a different procedure. 
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3. Construction of U,iso(l, l)@U-ziso(l, 1) 

Let us consider two copies of iso(1, 1) with generators (K', P i )  (i = 1,Z). The set of 
generators defined by 

(3.1) 
closesthealgebrat4(so(l, l)$so(l, 1)) N iso(1, l)$iso(l, 1). The formal transformation 
(equivalent to a graded contraction 111) defined by 

(3.2) 

I 2  33 = K'  + K2 J* = Pi + P2 N3 = K'  - K 2  N* = P* - Pi 

( J ,  PI ,  4, Ci I G . 9  D )  := ( f i N 3 f 2 .  J+. f i N + ,  - J - q  f i  N-? J3/2) 
gives rise to the non-vanishing commutation relations 

[ J ,  Pi1 = Pz 
[J.CiI=Cz [ J , C z I = p C l  [D ,Ci l=-Ci .  (3.3) 

[ J ,  9 1  = P P I  [ D ,  P,l = Pi 

Forpequal to+l,Oand-1 weobtainthecommutatorsoft&o(I. l)@so(l, I)), iiso(1, 1) 
and td(so(2) @so(l ,  1)) respectively. We denote these three algebras by g,. 

We will now show how the results presented in the previous section for the quantum 
non-standard (1 + 1) Poincark algebra provide a quantum structure for the algebras g, and 
for the groups G, as well as their universal R-matrices. 

-2 allows us to write 
U2t4(so(l, l)$so(l. 1)) = U,iso(l, I)@U&o(l, 1). The contraction (3.3) is implemented 
in the quantum case by considering the following definition of the contracted generators 
and deformation parameter: 

The invariance of Uziso(l, 1) under the transformation z 

( J ,  PI. Pz,Ci .Cz,D; W) := ( f i N d 2 ,  J + > f i N + . - J - > f i N - ,  J 3 / 2 ; Z / f i )  (3.4) 
where 1u is the new (contracted) quantum parameter. In this way we obtain the Hopf 
structure of U,&,. We omit the explicit expressions so obtained since they are exactly the 
quantum algebras Ut)g(,,.o.+, (with p 

3.1. Poisson-Hopf structure of Fun(G,) 

Before obtaining the quantum groups associated to Vug, we first study the algebra Fun(G,) 
of smooth functions on the group G,. 

PI) given in [I]. 

A matrix realization of g, in terms of 4 x 4 real matrices is 
-p 0 0 0 0 0 0  0 0 0 0  
0 0 0  0 0 0 0  

J = (  0 0 0  o )  0 1 0 0  o j  P z = ( '  1 0 0 0  1 0 0 0  O )  
0 0 0 0  0 0 0 0  0 0 0 0  

0 - 1 0 0  
0 0 1 0  0 1 0 0  1 0 0 0  

D =  

(3.5) 
Hence, a real 4 x 4 representation of the element g = e c ~ c ~ e ~ c ~ e p l P ~ e ~ P ~ e d D e * '  E G, is 
given by 

/ c - m  -&m 0 o \  

t32 coshd sinhd 
sinhd coshd 

c-,(e) o 

t4 I t42 

(3.6) 



(3.7) 

Note that for M equal to +1 and -1  we recover the hyperbolic and elliptic trigonometric 
functions. The case p = 0 corresponds to a contraction of the group representation (3.6): 

Proposition 3. The fundamental Poisson brackets 

CO(@) = 1 and So(@) = 0. 

(3.9) 

The Poisson brackets (3.9) are obtained from the Sklyanin bracket induced from a 
classical r-matrix 

{Q, @] = r " ( X ~ Q X ~ 0  - X;qX;@) 

In our case the r-matrix which satisfies the classical YBE is given by 

'P, @ E Fun(G,). (3.10) 

r = w ( J  A PI + D A Pz) (3.11) 

while left- and right-invariant vector fields are deduced from (3.6): 

(3.12) 

(3.13) 

3.2. Hopf structure of Fun,(G,) 

We now proceed to quantize the Poisson-Hopf algebra Fun(G,). First we consider two 
sets of quantum coordinates {i',i?;,Z!.) ( I  = 1,2) of Fun,(lSO(l, 1)) for I = 1 and 
of Fun-,(ISO(l, 1)) for I = 2; then we construct the Hopf algebra Fun,(ZSO(l, 1)) @ 



~ 
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Fun-,(ZSO(l, 1)) with the results of proposition 2 and by using the new coordinates 
defined by 
;=L(-I x + i 2 )  i*=+(i;+;;) 6 = $ ( i ' - i ' ,  b * = & - ; ; ) .  - 1  

(3.14) 

Next we apply the quantum contraction induced at the group level from (3.4): 

(6?bi ,b2?6, t2 ,2;  w) := ( 2 ~ I J T i , ~ , , G + l Y / T i , - i - , S - l ~ , ~ ; z l ~ i )  (3.15) 

obtaining in this way the quantization of Fun(G,) .  The final result is summarized as 
follows. 

Proposition 4. The Hopf algebra Fun,(G,) is given by the non-vanishing commutators 

d A  [a, $11 = wpe  s-,(@) 

r2, b21 = w(e'C-,(6) - 1) 

~ 6 ,  j 1 1 =  w(e'c-,(6) - 1) 

~ 6 ,  f i21= we's-,@) 

[ i t ,  t11 = wptz 

[ f i t ,  621 = wti 

[ j 2 , t 1 ] =  -wtl  
(3.16) 

[ j2 ,  t21 = -wt2 
coproduct, co-unit and antipode 

A ( 6 ) = 6 @ 1 + 1 @ 6  A ( & = i ? @ l +  1 @ 2  
A O ~ )  = $1 @ 1 + e'C-,@) @ 1, + pe"s-,(t?) c+ b2 

AQI)  = I + e-dc-,(i) t1 + pe-2s-p(i) ta t2 

~ ( $ 2 )  = i 2  @ I + edC-,(6) @ b2 + edS-,(6) @ cl (3.17) 

A(&) = & @ 1 t e-'C-,(6) @ t z  t e-'S-,(6) @ ?I 

E ( X ) = O  X € { 6 , b { , t i , 2 )  (3.18) 

(3.19) 

The final step in this quantization process consists of deducing the universal R-matrix 
for Vug,. We write two R-matrices (2.29) R: and RI, with generators {Kf, Pi) ( I  = 1,2) 
for the two copies U*,iso(l, 1) and compute the product R = RjR!,: 

ZAP: 
sinhzAP: 

] exp [ -KZ A sinhzP: , 

= exp (Ki  ~sinhzP:AP:sinhzAP: - K2AsinhzP:AP:sinhzAP:) I 
z 

X 
sinhzAPisinhzAP: (3.20) 
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We introduce the change of generators (3.1) and then apply the quantum contraction (3.4). 
The final expression for the universal R-matrix of U,g, (denoted by R,) is 

R, = exp{(WN + &NzNZ)L) (3.21) 

where 

M I  = D AC-,(wP1/2)sinh(wP2/2) + JAS-,(wP~/2)cosh(wP2/2) 
Mz = WD AS_,(wP1/2)cosh(wPz/2) + J AC-,(wPl/2)sinh(wP2/2) 
NI = w A PI S-, (wAPl/2) cosh(wA Pz/2) - APzC-,(wA 9 1 2 )  sinh(w APz/2) 
N2 = A PzS-,(w A PI 12) cosh( wAPz/2) - APT C-, ( WAPI 12) sinh( w AP2/2) 

L =  

(3.22) 

2w 
C+(wAPl) - cOsh(wAP2)' 

An interesting idea naturally arising from this result would be the use of the FRT 
construction (131 to quantize Fun(G,). In fact, the mahix representation (3.5) substituted 
in (3.21) gives rise to a particular representation of R,: 

R, = exp{wr) = exp{w(J A Pr + D A &)I 
= I ~ I + ~ ( J A P I + D A P ~ ) + ~ ~ ~ P I ~ P ~  (3.23) 

where I is the four-dimensional identity matrix. In this representation the commutation 
rules of the group coordinates (&e^ ,  $ i ,  t;) would be deduced from the equation 

%Gf i  = TZTIR, (3.24) 

where T is the generic element of the group G, (3.6), TI = T 8 I and TZ = I 8 T. 
Lengthy computations show that commutators obtained in this way are exactly those given 
in (3.16) up to a global change of sign in the deformation parameter w. Furthermore, 
coproduct (3.17). co-unit (3.18) and antipode (3.19) can be obtained from the relations 
A(T) = TbT, E ( T )  = I and y ( T )  = T-I. 

4. Universal quantizations of Weyl subalgebras 

The Lie brackets 

[ J ,  PI1 = pz [ J ,  5 1  = PPI [PI, 9 1  = 0 (4.1) 

correspond for p negative, positive and zero to the two-dimensional Euclidean, Poincar.5 
and Galilei algebras respectively. We can enlarge these algebras by means of a dilation 
generator D: 

[D. Pi] = Pi [D, J ]  = 0. (4.2) 

These enlarged algebras are the similitude algebras of the Euclidean, Minkowskian or 
Galilean planes, and will be denoted by s,; they are the Weyl subalgebras of the 
corresponding conformal algebras in two dimensions. Although the conformal algebras 
of the family (4.1) are indeed 4 3 ,  I), iso(2,l)  and so(2,Z) for /L c. 0, p = 0 and w > 0 
respectively [I], the crucial point is that each of the algebras in the family g, also contains a 
subalgebra isomorphic to the Weyl subalgebra (4.1) and (4.2). Moreover, the Hopf algebra 
U,g, preserves this property, that is, U,g, includes quantum Weyl subalgebras that deform 
(4.1) and (4.2). Therefore, the following proposition follows. 
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(4.3) 

are quasi-triangular Hopf algebras with the universal R-matrix (3.21) and (3.22). 

Furthermore, it is clear that by taking the generators Cj 0 and the group parameters 
ti E 0 in proposition 3 and 4 we find a Poisson-Hopf algebra structure for Fun(&) and a 
quantum Hopf algebra Funw(Sp). 

5. Concluding remarks 

A mmbined approach of the construction U,A @3 K Z A  ( A  being either a Lie algebra or 
the algebra of functions on the Lie group) together with a quantum contraction provide a 
simultaneous universal quantization for the algebras g, in the family (3.3). 

One of the groups in the family G, can be realized as a kinematical group: the group 
G-i T4(SU(Z)c3SU(I, 1)) is isomorphic to the (2+ 1) expanding Newton-Hooke group 
1141, the motion group of a non-relativistic space-time with constant negative curvature. 
Time is absolute in such a universe and a space-time contraction leads to the Galilean case. 
An adapted basis for G-I is formed by a time translation i?, two spatial translations pi, two 
boosts ZL and one spatial rotation J ,  with corresponding group coordinates ( t ,  x i ,  U;, @] 
(i = I ,  2). All expressions obtained for G-, in section 3 can be written in terms of these 
new generators and group coordinates by means of the isomorphisms 

j,J F . = - (  t - i P ; + C i )  ki=+(F' i -Cj)  g i - D  (5.1) 

$ 0 xi I 2(pj + ci) vi I 2(pi - ci) f -d. (5.2) 

An open problem still to be solved is the construction of a universal R-matrix for 
the non-standard quantum deformation of sl(2, R) which would provide a set of universal 
R-matrices for the whole set of (2 + 1) non-standard quantum algebras, following the 
method just described. We recall that among this set there are some rather interesting cas= 
from a physical point of view: the conformal algebras of the (1 + 1) Poincare (so(2,Z)) 
and two-dimensional Euclidean spaces (so(3, 1)). besides a 'null-plane' (2 + 1) Poincark 
algebra. 
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